skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gebre, Fisseha_L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Lightweight and strong components are essential for reducing energy consumption and enhancing efficiency. Lattice structures are one such geometry utilized to achieve weight reduction. This study investigates the mechanical properties of various lattice structures fabricated from Maraging Steel (EOS MS1) using the Direct Metal Laser Sintering (DMLS) method. The samples include three distinct cellular geometries: body-centered cubic (BCC), face-centered cubic (FCC), and octet truss configurations, which are subjected to tensile and compressive tests. The primary goal of this research is to evaluate the impact of heat treatment on the mechanical properties of cellular architecture under tensile and compressive loading conditions. Destructive, nondestructive testing, and simulation results were also obtained from different heat treatment processes. It was found that the age-hardened specimens performed the best overall in terms of ultimate tensile/compressive strength and elongation. The top-performing topologies in compression and tension were found to be the octet structure, as they were able to withstand the most loading and straining when compared to the other specimens. 
    more » « less